15 research outputs found

    Fast and adaptive fractal tree-based path planning for programmable bevel tip steerable needles

    Get PDF
    © 2016 IEEE. Steerable needles are a promising technology for minimally invasive surgery, as they can provide access to difficult to reach locations while avoiding delicate anatomical regions. However, due to the unpredictable tissue deformation associated with needle insertion and the complexity of many surgical scenarios, a real-time path planning algorithm with high update frequency would be advantageous. Real-time path planning for nonholonomic systems is commonly used in a broad variety of fields, ranging from aerospace to submarine navigation. In this letter, we propose to take advantage of the architecture of graphics processing units (GPUs) to apply fractal theory and thus parallelize real-time path planning computation. This novel approach, termed adaptive fractal trees (AFT), allows for the creation of a database of paths covering the entire domain, which are dense, invariant, procedurally produced, adaptable in size, and present a recursive structure. The generated cache of paths can in turn be analyzed in parallel to determine the most suitable path in a fraction of a second. The ability to cope with nonholonomic constraints, as well as constraints in the space of states of any complexity or number, is intrinsic to the AFT approach, rendering it highly versatile. Three-dimensional (3-D) simulations applied to needle steering in neurosurgery show that our approach can successfully compute paths in real-time, enabling complex brain navigation

    Human-robot visual interface for 3D steering of a flexible, bioinspired needle for neurosurgery

    Get PDF
    Robotic minimally invasive surgery has been a subject of intense research and development over the last three decades, due to the clinical advantages it holds for patients and doctors alike. Particularly for drug delivery mechanisms, higher precision and the ability to follow complex trajectories in three dimensions (3D), has led to interest in flexible, steerable needles such as the programmable bevel-tip needle (PBN). Steering in 3D, however, holds practical challenges for surgeons, as interfaces are traditionally designed for straight line paths. This work presents a pilot study undertaken to evaluate a novel human-machine visual interface for the steering of a robotic PBN, where both qualitative evaluation of the interface and quantitative evaluation of the performance of the subjects in following a 3D path are measured. A series of needle insertions are performed in phantom tissue (gelatin) by the experiment subjects. User could adequately use the system with little training and low workload, and reach the target point at the end of the path with millimeter range accuracy

    Conversational affective social robots for ageing and dementia support

    Get PDF
    Socially assistive robots (SAR) hold significant potential to assist older adults and people with dementia in human engagement and clinical contexts by supporting mental health and independence at home. While SAR research has recently experienced prolific growth, long-term trust, clinical translation and patient benefit remain immature. Affective human-robot interactions are unresolved and the deployment of robots with conversational abilities is fundamental for robustness and humanrobot engagement. In this paper, we review the state of the art within the past two decades, design trends, and current applications of conversational affective SAR for ageing and dementia support. A horizon scanning of AI voice technology for healthcare, including ubiquitous smart speakers, is further introduced to address current gaps inhibiting home use. We discuss the role of user-centred approaches in the design of voice systems, including the capacity to handle communication breakdowns for effective use by target populations. We summarise the state of development in interactions using speech and natural language processing, which forms a baseline for longitudinal health monitoring and cognitive assessment. Drawing from this foundation, we identify open challenges and propose future directions to advance conversational affective social robots for: 1) user engagement, 2) deployment in real-world settings, and 3) clinical translation

    Path replanning for orientation-constrained needle steering

    Get PDF
    Introduction: Needle-based neurosurgical procedures require high accuracy in catheter positioning to achieve high clinical efficacy. Significant challenges for achieving accurate targeting are (i) tissue deformation (ii) clinical obstacles along the insertion path (iii) catheter control. Objective: We propose a novel path-replanner able to generate an obstacle-free and curvature bounded three-dimensional (3D) path at each time step during insertion, accounting for a constrained target pose and intraoperative anatomical deformation. Additionally, our solution is sufficiently fast to be used in a closed-loop system: needle tip tracking via electromagnetic sensors is used by the path-replanner to automatically guide the programmable bevel-tip needle (PBN) while surgical constraints on sensitive structures avoidance are met. Methods: The generated path is achieved by combining the ”Bubble Bending” method for online path deformation and a 3D extension of a convex optimisation method for path smoothing. Results: Simulation results performed on a realistic dataset show that our replanning method can guide a PBN with bounded curvature to a predefined target pose with an average targeting error of 0.65 ± 0.46 mm in position and 3.25 ± 5.23 degrees in orientation under a deformable simulated environment. The proposed algorithm was also assessed in-vitro on a brain-like gelatin phantom, achieving a target error of 1.81 ± 0.51 mm in position and 5.9 ± 1.42 degrees in orientation. Conclusion: The presented work assessed the performance of a new online steerable needle path-planner able to avoid anatomical obstacles while optimizing surgical criteria. Significance: This method is particularly suited for surgical procedures demanding high accuracy on the desired goal pose under tissue deformations and real-world inaccuracies

    Tissue motion due to needle deflection.

    No full text

    Guest editorial medical robotics: surgery and beyond

    No full text
    The IEEE Transactions on Medical Robotics and Bionics (T-MRB) is an initiative shared by the two IEEE Societies of Robotics and Automation—RAS—and Engineering in Medicine and Biology—EMBS
    corecore